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Mechanical systems subjected to an impulsive load at set times are considered. The impulsive forces depend on generalized
coordinates and cause variation of the generalized velocities of the system. Equations of this type describe the vibrations of
structures due to seismic shocks, the dynamics of systems of rigid bodies on a moving train or a landing aircraft, etc. The instants
of the impulsive action may have limit points, as in the case of shocks which attenuate in a geometric progression. Various problems
related to the stability of motion will be discussed. First, general properties of solutions with infinitely many impulse times will
be established, namely, their existence, uniqueness and the nature of their dependence on the parameters and initial conditions.
The results obtained enable in particular, the linearization method to be used to investigate the stability. Particular attention is
paid to non-linear Hamiltonian systems with generalized (impulsive) potential. It is shown that such systems possess a cononical
phase flow, and KAM-theory may be used to investigate the stability. An important part of such investigations is the problem
of constructing the stability domain in the first approximation, the solution of which frequently involves an analysis of Hill’s
equation. A series of sufficient conditions are obtained for the stability of the trivial solution of Hill’s equation with periodic
shocks, generalizing well-known criteria which are applicable to smooth systems. The example of a pendulum whose suspension
point is given periodic equal vertical impulses is considered in detail. © 2001 Elsevier Science Ltd. All rights reserved.

Previously, systems subjected to impulsive actions have been considered on the assumption that there
art no beats [1-3]; it has been shown that the characteristic equation for a linear Hamiltonian system
is reciprocal and that stability is only possible in critical cases.

1. THE GENERAL PROPERTIES OF THE SOLUTION

Consider the system

d (o7 a7 .
= |-==0Quqq+ T 1 -T.), R" }
t(a' J 3 Q(t.q,9) OEA L@ —-1), qe (1.1)

where q are generalized coordinates, T is the kinetic energy, Q € R” are generalized forces, I, are
impulses applied to the system at set times T,, in some denumerable set A, and § is the Dirac function.
The presence of impulsive actions causes abrupt changes in the phase variables in accordance with the
formulae

oT oT
q(1y +0) =q(1, - 0), %““ +0)=£(t(x -0+ 1, (1.2)
The set A may have limit points 1 %, ..., in which case it is a finite or denumerable union of

monotone increasing sequences, one of which may be unbounded, while the others tend to 1, 5, ...,
(it will be assumed that the sequence {t}} itself is finite or increases without limit and that the numbers
7; do not belong to A).

We will first define what we mean by a solutions of system (1.1).

Definition 1. A function q(f) will be called a solution of system (1.1), (1.2) in a time interval J, with
abrupt changes (jumps) at time {7}, if:

1) q(¢) is continuous in J and twice differentiable at ¢ # 1;, and Eqgs (1.1) are satisfied,;
2) the jumps are described by formulae (1.2);
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3) if t* is a limit point of the sequence of jump times but not itself a jump time, then the derivative
q(¢) is continuous at t = t*.

The last property does not follow directly from the equations of motion, but it is essential in order
to be able to extend the solution in a unique manner to values of t > t*. In mechanical terms, it means
that there is no impulsive actions at times not in the set A. In the case t* € A, the jump is described
by formulae (1.2).

We spe01fy a domain Q; = J; x D x K" in the extended phase space of system (1.1), where J; = [to,
nlt e (1:1, 13), Dis a compact domain in the configuration space, and K" = {|¢;|<K,j=1,2,...,n
is a cube in the space of generalized velocities.

Proposition 1. We assume that

1) the kinetic energy T and generalized forces Q are described by functions which are continuously
differentiable in the domain Q;;

2) in the domain D, the impulses /; are uniformly majorized by some convergent sequence of real
numbers, that is, for any q € D we have

Wl S ap,ay +az+ ... <o

Then system (1.1) has a unique solution for any initial conditions q(ty) € D, 4(ts) € K". This solution
may be continued up to the boundary of the domain ;.

Proof. The general properties of solutions with a finite number of impulsive actions have been
established prevxously [1, 2]: a unique solution exists which reaches the boundary of the domain Q,
earlier than the time 7}. It therefore remains to consider the case of solutions which includes an infinite
sequence of impulses.

Let uy(t) = (q{?), q(t))y denote a solution of system (1.1) with the given initial data, which experiences
impulsive actions (1.2) only at time Ty, Ty, ..., Ty. Then, by virtue of our assumptions, {uy(7* - 0)}y=1
isa fundamental sequence in R*". In the hmlt as N — oo we obtain a solution u(¢) = (q(t) q(?)) in the
interval (g, T, ) which may be extended to ¢ e (17, ;) in a unique manner, by virtue of the given definition
of a solution, which it was required to prove.

Corollary. The solution constructed may be extended in an analogous manner to ¢ € (13, T3), etc.,
provided that the majorization condition 2 is satisfied for each of the sequences of impulses.

We will now examine how solutions with infinitely many jumps depend on the parameters or initial
conditions. Suppose the functions 7, Q and 7, in Eq. (1.1) depend on a parameter p e R’, where s is
some natural number.

Proposition 2. Assume that

1) the kinetic energy 7 and generalized forces Q are described by functions which are continuously
differentiable in the domain Q; x M, where M is a domain in the parameter space, and the function
I (q, {) are continuously differentiable in the domain D X M;

2) in the domain D x M the impulses I; are uniformly majorized by some convergent sequence of
real numbers, that is, for any ¢ € D, p € M, we have || Ii(g, W <apay +ay + ... < oo

3) in the domain D x M, the Jacobians (d;/on) are uniformly majorized by a convergent sequence
of real numbers, that is, for any q € D, u € M, we have ||dl(q, n)/ou|| < by, by + by + ... < oo, for
some norm in the space of (n x s) matrices.

Then the solutions of system (1.1) in the domain € x M are continuously differentiable functions of
the parameters. In addition, for values of ¢ such that the solution is defined, the derivative du(z)/ou =
(9q(?)/9u, 0q(r)/op) is the limit of the sequence of derivatives duy(r)/op as N — oo (the function uy(t)
were defined in the proof of Proposition 1).

The proof of this proposition is analogous to that of Proposition 1; it uses the theorem on the
differentiability of a sequence of mappings [4].

Corollaries. 1. Defining the deviations of the initial data of Eq. (1.1) from certain fixed values as
parameters, we obtain a theorem according to which solutions are differentiable with respect to the
initial data.

2. Proposition 2 can be generalized to the case of higher-order derivatives on the basis of the
corresponding result for a sequence of mappings [4]. If a majorization condition of type 3 is valid not
only for the first derivative but for all derivatives up to order m inclusive, then the Cauchy problem has
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an m times differentiable solution, whose derivatives of orders 1, ..., m for ¢ > 1* are the limits of the
corresponding derivatives of the sequence {uy(¢)}.

Let us assume now that q°(¢) is a solution of system (1.1) defined in an unbounded interval ¢t > ¢,
The usual definitions of stability of this solution in Lyapunov’s sense and asymptotic stability may now
be formulated. If the conditions of Propositions 1 and 2 are satisfied, the linearization method may be
used to investigate stability. Special care is necessary in the case when the instants of impulsive action
have a limit point T* < <o, because of the need to evaluate infinite products of Jacobians. The convergence
of these products may be established using Proposition 2.

2. HAMILTONIAN SYSTEMS WITH IMPULSIVE ACTIONS

An important special case of mechanical systems is described by equations of the form

dy_0H dp__dH

dt dp dt dq

where p = 07/0q € R” are generalized impulses and H = H(t, q, p) is the Hamiltonian, which satisfies
certain smoothness conditions. If a generalized functionuéAUa(q)S(t —14) is added to the Hamiltonian,

where the functions U,(q) are differentiable, we obtain a canonical system with impulsive actions.

dq _oH dp oH
—_——, —=—— 1 8 t—7T.), 1. = dlU 2.1
a - op 3a +a§A a(@O(t—1y), I, =gradU, (2.1)

In a Hamiltonian system, the transformation of phase variables effected by the phase flow is a canonical
transformation [5]. This means that, at any time #, > f;, the relation between the initial values (g, pg)
of the phase variables and their values (qy, p;) at time ¢ = ¢, may be expressed in terms of a certain
generating function S(#, qg, px) by the formulae

q; = 05/0p;, Po = 05/0qy

Proposition. The phase flow of system (2.1) defines a canonical transformation for t # 1, (a0 € A).
The proof of this proposition reduces to verifying the canonicity of the impulsive transformation of
the phase variables at the jump times 1, which is given by the formulae

q(1 +0) =q(14 = 0), P(Tg +0)=p(ty ~0)+1,(q(T,,)) (2:2)
As is easily verified, the transformation (2.2) may be defined in terms of a generating function
So=q(Te — 0)p(Te + 0) + Ug(t, - 0)

Let us assume that the interval (¢, t,) contains a finite number of jump times 1y, 1,, ...,Ts. Then the
transformation IT;: (qg, po) — (gx, px) may be represented in the form of a composition of canonical
mappings

I, = N(t,, 8 ) o U o N(T,_y, T )e...oU o N(2y, 1)) 2.3)

where U; is the transformation (2.2) with o = j, and N(a, b) is the transformation along the phase flow
of the regular part of system (2.1) between times t = @ + 0 and ¢t = b — 0. Since the canonical
transformations form a group, formula (2.3) defines a mapping of the same type.

Now assume that the interval (¢, #;) contains an infinite sequence of jump points 7; — 1*, and that
the conditions of Proposition 1 are satisfied. Then the product (2.3) is infinite:

I, = Nt )e...0U; o N(T,_y, T )0...0U; o N1, 1)) 2.4)
We shall prove that this product converges to some canonical mapping. If the partial derivatives of

the Hamiltonian in the relevant domain of the phase space Q, are bounded by a constant M, then the
mapping N(7,_;, T;) is close to an identity, that is, we have a limit

Ix =N, )Xl M(T; -1, V2n, xeQ (2.5)
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where ||-|| denotes the Euclidean norm. In addition, the mapping Uj is also close to an identity, meaning
that

lIx - Uyl = L0l < g (2.6)
Conditions (2.5) and (2.6) guarantee that the product (2.4) will be uniformly convergent, since
QFay+.. <o H(T,~—T)+(T3—T))+...=T =1, <o

To verify that the limit mapping is canonical, one can use a characteristic property of canonical
mappings, such as the preservation of integrals of the form pdq along closed contours [5], which is
conserved on taking the limit.

Consequently, formula (2.4) defines a canonical mapping.

Remark. In [1, 2], linear Hamiltonian systems with impulsive actions of a more general form were considered:
all the phase variables were allowed to vary at the jumps. In the mechanical systems under discussion here, the
generalized coordinates are continuous functions of time.

We will now discuss the question of the stability of the equilibrium positions and the periodic solutions
of system (2.1). Corresponding to solutions of both these types we have fixed points of the Poincaré
mapping. A fixed point of a canonical mapping cannot be asymptotically stable, since the characteristic
equation is reciprocal. A necessary condition for stability is that all roots of the characteristic equation
equal unity in absolute value [5)]. Sufficient conditions for stability in the case n = 1 are determined by
the Arnol’d-Moser theorem [5]: to verify them, one must verify that the normal form of the mapping
is non-degenerate in the neighbourhood of the fixed point.

Let us assume that the Hamiltonian in system (2.1) is periodic in time with period t, while the set
of instants of impulsive actions is invariant to translation by t. If the functions / and I, are sufficiently
smooth, the Arnol’d-Moser theorem may be used to investigate the stability of equilibrium positions
and periodic solutions of system (2.1).

Example. Consider a mathematical pendulum whose suspension point is subject to equal shock
impulses applied periodically along the vertical. We choose units of measurement such that the length
of the pendulum, its mass and the acceleration due to gravity are equal to unity. Then the equations
of motion will be

X+sinx =1 i 8(r - jr)sinx @7

j=—o0

where x is the angle of deviation from the vertical, T is the time interval between successive impulses
and / is the magnitude of the impulse. System (2.7) has equilibrium positions x = 0 and x = & (the
lower and upper positions of the pendulum): at these points the moments of the gravity force and of
the impulsive forces vanish. We will first study the stability of the lower equilibrium point. To do this,
we must construct the Poincaré mapping along the phase flow in time 7.

When there are no impulses, Eqs (2.7) can be integrated in terms of Jacobi elliptic functions [6]. In
the neighbourhood of the lower equilibrium position the motion with initial datax = 0, x = 2k at
¢t = 0 is described by the formulae

x=2arcsin(ksnr), x=2kcent (2.8)

where sn ¢t and cn ¢ are the elliptic sine and cosine with modulus 4. Solution (2.8) can be generalized
to arbitrary initial data, using the general properties of elliptic functions. The result is

. -1
. X__ XO XO . XO 2 . 2X0
Sin—={ —=sntcos—+cntdntsin— || 1 —sn°rsin° ==
2 ( 2 2 2 )( 2 ) (2.9)

-1 .2
. . L2 X X 2 X
x=(xocnt-—sntdnz‘smxo)(l—sn2t5m2 70) , kP =29 4gin2l0

The transformation of the phase variables in time t (Poincaré mapping) is described by the
formulae
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X =x(1), x; =x(T)+ 7 sin x(1) (2.10)

The functions x(t), x(t) are defined by (2.9).
For convenience, we will change to canonical variables g, p by the formulae

q=25in£, X= pcosi
2 2

In these variables, relations (2.9) and (2.10) become

% Al
g = posnt(l—T"]+q0cntdnt (l—snz‘t—fJ

2\ 2\ 2\ %
p,=(pocnt—qosntdn1:)[l—snzt-(l—:—] (]_‘I_o] (-1‘—) + Iq; (2.11)

1 2
K? =Z[q§ +[ -%’jpg]

To expand the mapping (2.11) in powers of g, pg we must first perform that operation for the elliptic
functions occurring in it. Using expansions of the latter in Fourier series [7], we obtain

2
SN T =sin t+%—(sintcosr—1)cost+0(k“)
2
enT=cosT——-(sinTcosT-T)sin T+ ok*) (2.12)
1% 4
dnt=1 _T(l —cos2t)+O(k™)

Substituting these expansions into (2.11), we obtain

q) =qpCOST+ ppSinT+ Y, a,q4ps+---

r+s=3

P =qy(-sint+Tcosty+ py(cost+Isint)+ I B,.gops +--.

, r+s=3

. . l M
Uy = l—]gsm TSINTCOST+T), Oy = _ECOS 3sinTcos T+ 1) (2.13)

| - . 1 .
oy, = —Esm T(3sinTcosT—1), Oy =RCOS T(SINnTCOS T~ T)
Bao = —0tgy + 10tzg, By =0t + 10y, Byy =0y +1otyy, Boy =0ty + fotgy

Expansion terms of order five and higher are omitted in (2.13).
First let us investigate the linear part of mapping (2.13). The characteristic equation is

p2-24Ap+1=0, A=cosT+(//2)sinT
A necessary condition for the lower position of the pendulum to be stable is
1Al < 1 (2.14)

If inequality (2.14) is reversed, the equilibrium position is unstable. The domain (2.14) in the plane
of parameters T > 0, [ is shown in Fig. 1 (the unhatched area). The boundaries of this domain are the
curves I = 2 tg(1/2) and t = 2mn (m e Z.) (in these two cases p; ; = 1), and also I = -2 ctg (1/2) (the
dashed curves) and © = (1 + 2m)n (and then p;; = -1).
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To solve the problem of stability in the interior of the domain (2.14) in the strictly non-linear sense,
we must reduce mapping (2.13) to normal form. We take the canonical linear change of variables in

1 sin
~tap, o2=29
sintT

res=3

the form
_lo -
q - o ’ P 2‘1
The angle @ is determined from the conditions cos @ = A4, sin @ sin T > 0.
In the new variables, mapping (2.13) is
0, =0ycos@+ Fysing+ Y a, Qo +...,
1 0 010 2.15)

~Qpsin@+ Pycos@+ Y, b QiR +...

P =
r+s=3
Oy +— O +12a +13a ay;, =t
a = — — — —— N =
3= 2| Py 20 T G2 T %os 03 03
3
a2| =(121 + 1(1]2 +lea03, a]2 =a2a12 +—[(12(103
1 1 I? I& !
by =—¢ +=By +—By, +— -—a
30 a4(‘330 2[521 4512 8303] 202 30
1
by = 0 2Bgs — —a
03 Bos 2o 03
1 3, ) !
by =— +1B, +—1 -——a
21 2(321 B12 2 Bos oy 21

3 I
by =By += Bos ——a
12 BIZ 2 BOS 2(12 12

This mapping contains no quadratic terms. It will therefore suffice to investigate two cases:
cos ¢ # 0 (the non-resonant case) and cos @ = 0 (fourth-order resonance). The condition for the normal

form in the non-resonant case to be non-degenerate is [8]
3030 + b2l +ap,+ 3b03 20

Carrying out the necessary calculations, we obtain
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3ayy + by +ayy +3by; = (31*(t—sinTcosT) +8tsin? @) £ 0

16sin ¢

By the Arnol’d-Moser theorem, this implies that the fixed point is stable.
The case of fourth-order resonance occurs on the curve I = -2 ctg T in the parameter plane. In this
case the inequality

(a30 + b30 )(030 + 2012 + b03) > 2((103 - b30)2 (216)

guarantees stability; if the sign of the inequality is reversed, the fixed points is unstable. Calculations
have shown that inequality (2.16) holds in the domain (2.14).

Thus, in this example, inequality (2.14) is not only a necessary but also a sufficient condition for
stability.

We tv}:zill now investigate what happens when the equilibrium position becomes unstable. To do this
we consider the fixed points of mapping (2.11) close to the origin. To such points there correspond
T-periodic motions of the pendulum. Since the total mechanical energy of the pendulum is conserved
in the inter-shock intervals, it must also be conserved at the shocks in t-periodic motion. The simplest
motions of this kind are described by closed curves in the phase plane which cut the ordinate axis at
the shock times. In the interval between successive shocks, the trajectory describes either an integer
number of revolutions about the origin (in which case the period is t) or a semi-integer number (in
which case the period is 21), whence we obtain

1=2mKk), meN

where K(k) is the complete elliptic integral of the first kind, expansion of which [7] gives
T=mnr(l+ Y,k + O(k*))

Thus, in the plane of the parameters 1, I periodic motions of the type under consideration exist to
the right of the vertical straight lines T = mn. Consequently, the parts of these lines in the upper half-
plane constitute safe bifurcation boundaries of the stable lower equilibrium position of the pendulum
and the parts in the lower half-plane are unsafe bifurcation boundaries.

Motions of the second kind are characterized by abrupt reversal of the velocity at shocks. Motions
of this kind are asymmetric: some of them are shown in Fig. 2: (a) I > 0, the pendulum does not pass
through the lower position; (b) I > 0, in the interval between shocks, the pendulum performs a complete
oscillation plus a partial one analogous to subcase a); (c) < 0, the pendulum passes through the lower
equilibrium position but does not perform a complete oscillation in the inter-shock interval; (d) 7 < 0,
over one period the pendulum performs a complete oscillation and one partial one analogous to subcase
c). (For clarity, the superimposed parts of the trajectories are shown separately.) Each of the motions
listed has a mirror image, obtained by reflecting the phase trajectory in the ordinate axis. There is an
infinite set of families of motions of this kind, differing from one another in the number of complete
oscillations of the pendulum per period, the sign of the impulse I and the sign of the variable x at the
shock times.

Using relations (2.10) and reduction formulae for elliptic functions [7], we obtain for all these families
the equality

-1
l=25n£dn£(cn£) (2.17)
2 2 2

which may be considered for given T and I as an equation in the modulus & of the elliptic functions
{(which is equal to the sine of half the maximum angle by which the pendulum deviates from the vertical
in the motion under consideration). For small &, by formulae (2.12), Eq. (2.17) becomes

2
1=2xg1(1+5-(cosz-,i)+0(k4)) (2.18)
2 4 sint

Since |sin | < T, |cos T| =< 1, the coefficient of k? in (2.18) has the same sign as sin 7. Hence we
can draw the following conclusion concerning the nature of the boundary I = 2 tg (1/2) of the stability
domain (2.14) corresponding to the roots p, ; = 1 of the characteristic equation: if sin T > 0 (in which
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case I > 0 in (2.18)), the bifurcation boundary is unsafe, that is, unstable periodic motions coexist with
the stable equilibrium position and disappear when the latter becomes unstable. Conversely, if sin
T < 0, then I < 0 and the bifurcation boundary is safe, that is, stable periodic motions are generated
when the equilibrium position becomes unstable (“pitchfork” type bifurcation).

Periodic motions of the third kind are symmetrical and have period 2t. There is an infinite set of
families of such motions, two of which are shown in Fig. 3: (a) I < 0 and (b) I > 0 (here again, for
clarity, superimposed parts of the trajectories are shown separately). Taking (2.8) into consideration,
we have the following periodicity condition

N

-1
I=-2cn —T-(sn 1dnl) (2.19)
2 2 2

For small k, using formulae (2.12), we can reduce Eq. (2.19) to the form

T kz T 4
I=-2ctg 5 [l 2 (cost sint) + O(k )j (2.20)
From formula (2.20) we can draw the following conclusion as to the nature of the boundary
= -2 ctg (1/2) of the stability domain (2.14) corresponding to roots p; ; = —1 of the characteristic
equation: if sin T > O (in which case I < 0 in (2.20)), the bifurcation boundary is safe (period-doubling
bifurcation). Conversely, if sin T < 0, then I > 0 and the bifurcation boundary is unsafe.
Investigation of the upper equilibrium position of the pendulum proceeds along similar lines. In this
paper we will limit ourselves to constructing the domain in which the necessary conditions for stability
are satisfied. To do this we linearize system (2.7) in the neighbourhood of x = &, puttingy = x -7

§-y=13 8- jo

j:—oo
The change in the phase variables during a period is described by the formulae

y=ypcht+yysht, y=ygsht+y,cht+I(y,cht+y,sht) (2.21)

X (a) ()

(1

Fig. 3
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The condition for stability of the linear mapping (2.21) has the form
2cht+/Ishti<2 (2.22)

The domain (2.22) in the parameter plane is constructed in Fig. 4 (the unhatched area); unlike the
case considered previously, it is non-periodic. It is interesting to note that this domain contains the whole
half-line I = 2, T > 0. Consequently, periodic shocks of intensity I = 2 stabilize the upper equilibrium
position of the pendulum, except for the dependence on the length of the time interval T between them.
As 1 is reduced, the width of the stability domain increases without limit. Analysis shows that the upper
boundary of the stability domain (the dashed curve in Fig. 4) is unsafe, and the lower boundary is safe
(period-doubling bifurcation).

3. HILL'S EQUATION WITH IMPULSIVE ACTIONS

The foremost problem in investigating the stability of solutions of Hamiltonian systems is to analyse
the linear approximation. A case of practical importance is that of the Hill’s equation

g+ f()g=0, fa+1)=f(n) (3.1)

Various method have been developed to estimate the characteristic constant of Eq. (3.1) [9], enabling
the sufficient conditions for the stability of the trivial equilibrium position to be derived without having
to solve a Cauchy problem numerically. One such method is based on estimating the angle of rotation
of the solution vector during the time t. The following proposition has been proved.

Proposition 3 [9]. Let | be a non-negative integer and ¢ a real number such that

Int<c<(+ Dnjt 3.2)
Define the functions
£~ =min{f(t),c?),  fF=max {£(r), c?) (3.3)
If
In< %i fF(dt = —l—(}) ffodi<d+Nr (34)

then the trivial solution of Eq. (3.1) is stable.
Let us now assume that system (3.1) experiences impulse actions:

Fig. 4
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+(fm- 5 laa<z—ra>]q=o (3.5)
ocA

where I, are constants and the set |1,| is invariant to translation by t.
Proposition 3 admits of the following generalization.

Proposition 4. Let the numbers / and ¢ and the functions £,(¢t) and f.* () be defined as in Proposition
3.1If

11r<l(} fc‘(t)dt-S“)s —I—(f fj(t)dt+S’J<(l+1)n
c 0 c 0

(3.6)
st= ¥ 1,, §S=- % Iy
tq €(0, 1) Ty €(0, 1]
I >0 Iy <0

then the trivial solution of Eq. (3.5) is stable.

Proof. The integrals (with coefficients 1/c) in formulae (3.4) and (3.6) are upper and lower limits
for the angles of rotatlon of the vector-solutions of the auxiliary system with Hamiltonian

= Yy(cp® + ¢! f(t)g?) (in the phase plane (g, p) these angles y(¢) are measured in the clockwise
dlrectlon) [9}. The corresponding auxiliary system with shocks has the Hamiltonian

H=Y%(cp? +c7(F)- T 1,8~ 1))a?)
Let us estimate the change in angles of rotation at the shocks. Since

gy =-p /g, gy’ =-p'/g

(the mlnus sign 1s added to take into account the reverse direction in which the angle is measured)
and p* = p~ + ¢!, it follows that

gyt =gy —c'ly
Applying the formula of finite increments (Lagrange’s theorem), we obtain
v =y e cos’E Ee(yT yY)

Consequently, peositive shocks cause a decrease in the angle of rotation, by an amount not exceeding
S*/c, and negative shocks cause an increase by an amount not exceeding S7/c. Hence follows the
proposition we have formulated.

Various stability criteria [9] based on estimating the integrals

f FAROREEE
0

can also be extended to the case of Eq. (3.5).
To that end, it suffices to consider the Dirac functions in Eq. (3.5) as limits of a certain sequence of
regular functionals in the space of generalized functions. We finally obtain the following propositions.

Proposition 5. If ] = 1 formula (3.2) and

} (c? = £7(0)dt + S* < c(c - Im)

° 3.7)

Tc
j(fc () -c?)dt+ S~ <2c‘(l+1)clg2(l )

or,ifl=0
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T
| f(dt-S*+8" =0,
0

(3.8
T + 2 ~ Tc
[ (fF()—cHHdr+S <20c(g-5-
0
the trivial solution of Eq. (3.5) is stable.
Proposition 6. If for some ! e N
K I’n? T
T ——— |dt +1§" < 2nl(l+ 1),
(I)(f() = ) i+ gz
3.9)
I*n?
f=——, §'=0
T
or
T 4 T
Jfodr+§ < s J fdt+8S -8 =0 (3.10)
0 0

(the function f;” was defined in (3.3)), the trivial solution of Eq. (3.5) is stable. (The formula in [9]
corresponding to inequalities (3.10) when there are no impulsive forces contains an inaccuracy.)

Remark. If f(f) = 0 and S* = 0, then the second inequality of (3.10) is automatically valid, while the first may
be regarded as an extension of the well-known Lyapunov criterion [9] to systems with impulsive actions.

Proposition 7. If the following conditions are satisfied for some ! € N

12n2 _ T 12n2 . 2
fins o S™ =0, 1:{) —t-z——f(t) dt+18" <ln (3.11)

then the trivial solution of Eq. (3.5) is stable.

Example. Consider the linearized equations of motion of a pendulum with periodic impulsive actions

5c'+x=xl‘Z St - jr) (3.12)
j=—“
Formula (3.6) with ¢ = 1 implies the following conditions
t-n(l+)<I<t-nl, Im<t<(+Dr;, 1=0,1,2,... (3.13)
Since f(t) = fg' (¢) = 1, formulae (3.10) give
tT-d4/ts]s1, 1<2 (3.14)

The generalized Lyapunov criterion describes the part of the domain (3.14) lying in the lower half-
plane.
Conditions (3.9) in the present case are

T
200+1) (3.15)

12 -~ < 2mi(l+ Dig

I<0, 1=In
Finally, formulae (3.11) become

t<in, 1>0, *n?-t*+1/<in® (3.16)
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Figure 5 illustrates the domains (3.13)—(3.16), which constitute part of the stability domain (2.14)
in the linear approximation. The horizontal hatching denotes solutions of inequality (3.13)
(parallelograms inscribed in each of the stable components), the left-inclined hatching denotes the
domain (3.14) (which is unbounded for T < =), and the right-inclined hatching denotes the domains
(3.15) and (3.16) (curvilinear triangles in the lower and upper half-planes, respectively).

The advantage of Propositions 4-7 is that they allow sufficient stability conditions to be derived even
where a complete construction of the stability domain does not seem possible. Thus, if the pendulum
is subject to a periodic series of unequal shocks, its dynamics is described in the first approximation by
the equation

itx=x 3 1.8(t-1,) (3.17)

aeA

where the sets {I,} and {1} are invariant to the translation of time by .
The number of shocks in the interval (0, T] may be large or even infinite, but this does not prevent
the application of the results described above. In particular, Proposition 4 implies sufficient stability

conditions
m<t-S*<t+S <(+hHm, [=0,1,2,... (3.18)
while formulae (3.10) imply the conditions
St<st+§ =<4/1 (3.19)

Propositions 6 and 7 are applicable in the case when all the impulses have the same sign. As an
example, if the impulses /, in the interval (¢, ¢y + t) form an infinitely decreasing geometric progression
with common ratio g € (0, 1) and the first term is /; < 0, then S™ = 0, §™ = -I}/(1 - q). The sufficient
conditions (3.18) for stability then take the form

m<tst-L/(1-q)<({+Dn, 1=0,12,...
and conditions (3.19) become
@rrt-tl-g)<1, <0
In addition, for stability it is sufficient for inequalities (3.15) to hold, where I = I;/(1 - g).

This research was supported by the Russian Foundation for Basic Research (99-01-00281) and the
Programme for State Support of the Leading Scientific Schools of the Russian Federation (00-15-96088).



[oy

XN

o

The stability of mechanical systems subjected to impulsive actions 629

REFERENCES

SAMOILENKO, A. M. and PERESTYUK, N. A,, Differential Equations with Impulse Effects. Vishcha Shkola, Kiev, 1987.
BAINOV, D. D. and SIMEONOV, P, Systems with Impulse Effect. Stability Theory and Applications. Ellis Horwood, Chichester,
1989.

MYSHKIS, A. D., Auto-oscillations in continuous systems with impulsive self-support. In Resenhas IME-USP, 1997, 3, 1,
93-106.

SCHWARTZ, L., Analyse Mathématique. Vol. 1. Herman, Paris, 1967.

ARNOLD, V. 1., Mathematical Methods of Classical Mechanics. Nauka, Moscow, 1979.

MARKEYEYV, A. P, Theoretical Mechanics. CheRo, Moscow, 1999.

GRADSHTEIN, 1. S. and RYZHIK, 1. M., Tables of Integrals, Sums, Series and Products. Fizmatgiz, Moscow, 1962.
MARKEYEY, A. P, Area-preserving mappings and their applications in the dynamics of systems with shocks. Izv. Ross. Akad.
Nauk. MTT, 1996, 2, 37-54.

YAKUBOVICH, V. A. and STARZHINSKII, V. M., Linear Differential Equations with Periodic Coefficients and their
Applications. Nauka, Moscow, 1972.

Translated by D.L.



